Analysis of Spike Statistics in Neuronal Systems with Continuous Attractors or Multiple, Discrete Attractor States
نویسنده
چکیده
Attractor networks are likely to underlie working memory and integrator circuits in the brain. It is unknown whether continuous quantities are stored in an analog manner or discretized and stored in a set of discrete attractors. In order to investigate the important issue of how to differentiate the two systems, here we compare the neuronal spiking activity that arises from a continuous (line) attractor with that from a series of discrete attractors. Stochastic fluctuations cause the position of the system along its continuous attractor to vary as a random walk, whereas in a discrete attractor, noise causes spontaneous transitions to occur between discrete states at random intervals. We calculate the statistics of spike trains of neurons firing as a Poisson process with rates that vary according to the underlying attractor network. Since individual neurons fire spikes probabilistically and since the state of the network as a whole drifts randomly, the spike trains of individual neurons follow a doubly stochastic (Poisson) point process. We compare the series of spike trains from the two systems using the autocorrelation function, Fano factor, and interspike interval (ISI) distribution. Although the variation in rate can be dramatically different, especially for short time intervals, surprisingly both the autocorrelation functions and Fano factors are identical, given appropriate scaling of the noise terms. Since the range of firing rates is limited in neurons, we also investigate systems for which the variation in rate is bounded by either rigid limits or because of leak to a single attractor state, such as the Ornstein-Uhlenbeck process. In these cases, the time dependence of the variance in rate can be different between discrete and continuous systems, so that in principle, these processes can be distinguished using second-order spike statistics.
منابع مشابه
Attractor systems and analog computation
Attractor systems are useful in neurodynamics, mainly in the modeling of associative memory. This paper presents a complexity theory for continuous phase space dynamical systems with discrete or continuous time update, which evolve to attractors. In our framework we associate complexity classes with different types of attractors. Fixed points belong to the class BPPd, while chaotic attractors a...
متن کاملNew Encyclopedia of Neuroscience
Synopsis. The term ‘attractor’, when applied to neural circuits, refers to dynamical states of neural populations that are self-sustained and stable against perturbations. It is part of the vocabulary for describing neurons or neural networks as dynamical systems. This concept helps to quantitatively describe self-organized spatiotemporal neuronal firing patterns in a circuit, during spontaneou...
متن کاملPartially unstable attractors in networks of forced integrate-and-fire oscillators
The asymptotic attractors of a nonlinear dynamical system play a key role in the long-term physically observable behaviors of the system. The study of attractors and the search for distinct types of attractor have been a central task in nonlinear dynamics. In smooth dynamical systems, an attractor is often enclosed completely in its basin of attraction with a finite distance from the basin boun...
متن کاملAnalysis of Changes on Mean Particle Size in a Fluidized Bed using Vibration Signature
Vibration signals were measured in a lab-scale fluidized bed to investigate the changes in particle sizes. Experiments were carried out in the bed with a different mass fraction of coarser particles at different superficial gas velocities, and probe heights. The S-statistic test evaluates the dimensionless squared distance between two attractors reconstructed from time series of vibration signa...
متن کاملPii: S0893-6080(98)00064-1
A recurrent neural network can possess multiple stable states, a property that many brain theories have implicated in learning and memory. There is good evidence for such multistability in the brainstem neural network that controls eye position. Because the stable states are arranged in a continuous dynamical attractor, the network can store a memory of eye position with analog neural encoding....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2006